

Massage Has the Potential to Accelerate Recovery and Decrease Muscle Soreness after Physical Exercise (Literature Review)

by Endang Sri Wahyuni

Submission date: 23-Feb-2023 09:45AM (UTC+0700)

Submission ID: 2020915483

File name: no_16._SAJ20-19929862._p._Fatkur.pdf (123.96K)

Word count: 3829

Character count: 21444

Massage Has the Potential to Accelerate Recovery and Decrease Muscle Soreness after Physical Exercise (Literature Review)

Fatkur Rohman Kafrawi¹, Nurhasan², Endang Sri Wahjuni², Novadri Ayubi¹,
 Heryanto Nur Muhammad², Nining Widyah Kusnanik², Anton Komaini^{3,*}

4

¹Doctoral Program of Sport Science, Postgraduate, Universitas Negeri Surabaya, Surabaya, Indonesia

²Faculty of Sport Science, Universitas Negeri Surabaya, Surabaya, Indonesia

³Faculty of Sport Science, Universitas Negeri Padang, Padang, Indonesia

10

Received November 6, 2022; Revised December 26, 2022; Accepted January 16, 2023

Cite This Paper in the Following Citation Styles

(a): [1] Fatkur Rohman Kafrawi, Nurhasan, Endang Sri Wahjuni, Novadri Ayubi, Heryanto Nur Muhammad, Nining Widyah Kusnanik, Anton Komaini, "Massage Has the Potential to Accelerate Recovery and Decrease Muscle Soreness after Physical Exercise (Literature Review)," *International Journal of Human Movement and Sports Sciences*, Vol. 11, No. 1, pp. 170 - 175, 2023. DOI: 10.13189/saj.2023.110120.

(b): Fatkur Rohman Kafrawi, Nurhasan, Endang Sri Wahjuni, Novadri Ayubi, Heryanto Nur Muhammad, Nining Widyah Kusnanik, Anton Komaini (2023). *Massage Has the Potential to Accelerate Recovery and Decrease Muscle Soreness after Physical Exercise (Literature Review)*. International Journal of Human Movement and Sports Sciences, 11(1), 170 - 175. DOI: 10.13189/saj.2023.110120.

Copyright©2023 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License

Abstract Physical exercise can cause fatigue, resulting in a decrease in muscle work efficiency. This study aimed to analyze the potential of massage to accelerate recovery through a literature review. This type of research is a literature review. Article searches were carried out using a comprehensive strategy in research journal databases such as Web of Science (WOS), Scopus, and Pubmed. The keywords used are massage, physical exercise, muscle pain, inflammatory response, and recovery. The inclusion criteria are journals that discuss sports massage, physical exercise, muscle pain, inflammatory response, and recovery after exercise. Furthermore, the exclusion criteria are journals published in the last 6 years from 2022. 30 articles were obtained, and 12 articles were analyzed based on the suitability of the topic, objectives, research protocol, and search results. Exercises performed at high intensity, especially with repetitive eccentric movements, will cause muscle damage, inflammation, and muscle pain. This review reports that physical intensity exercise that triggers muscle soreness has many advantages when massaged. This benefit is so beneficial in sports that the potential for the use of regular NSAIDs is reduced. In addition, massage has the potential to accelerate recovery, reduce pain intensity, and increase

ROM and muscle strength after physical exercise. Therefore, we recommend that massage be used as an alternative to speed up recovery and reduce pain intensity after exercise.

Keywords Massage, Physical Exercise, Fatigue, Muscle Soreness, Inflammation, Recovery

1. Introduction

Physical exercise can cause fatigue resulting in decreased efficiency of muscle work [1]. The magnitude of body's functional changes caused by exercise is influenced by the intensity and duration of the exercise [2]. The mechanism of muscle fatigue is considered to be a complex interaction phenomenon between central and peripheral factors [3]. A study reported that central nervous system (CNS) processes that reduce nerve impulses to muscles cause a decrease in muscle strength known as central fatigue [2]. On the other hand, peripheral fatigue is mainly triggered by increased levels of lactic acid in the blood [4,5]. One study reported that lactic acid contributes

to ischemic pain in sensory neurons that innervate muscles [6]. In addition, post-exercise increase in pro-inflammatory cytokines is believed to be the cause of delayed onset muscle soreness (DOMS) and tissue disruption [7,8].

In the current case, non-steroidal anti-inflammatory drug (NSAIDs) modalities are the most popular in the management of post-exercise pain [9-12]. On the other hand, the use of NSAIDs is a wrong action because it interferes with the response of muscle growth it will have an impact on hypertrophy and muscle strength [13]. In addition, the use of NSAIDs will cause dependence [14]. In this regard, fatigue and pain caused by training sessions and competitions will interfere with athlete performance [15].

Alternative solutions need to be found to overcome these problems. One of them with the massage. Massage has been widely used when an athlete is injured in a match [16,17]. In addition, several studies have reported that massage can increase muscle strength and reduce pain during the break [1,7,18]. On the other hand, the lack of reports on this matter gives us the opportunity to discuss in depth and evaluate the available information regarding the potential of the massage through a literature review.

This study aims to analyze the potential of massage to

accelerate recovery and decrease muscle soreness after physical exercise.

2. Materials and Methods

This type of research is a literature review. Article searches were carried out using a comprehensive strategy in research journal databases such as Web of Science (WOS), Scopus, and Pubmed. The keywords used are massage, physical exercise, muscle pain, inflammatory response, and recovery. The inclusion criteria are journals that discuss sports massage, physical exercise, muscle pain, inflammatory response, and recovery after exercise. Furthermore, the exclusion criteria are journals published in the last 6 years from 2022. 30 articles were obtained, and 12 articles were analyzed based on the suitability of the topic, objectives, research protocol, and research results.

3. Results

The results of the research in this literature review are presented in Table 1.

Table 1. Review of research results on the effect of massage on recovery and pain intensity

Author	Sample Characteristics	Study Design	Intervention	Results
(Chen et al., 2019) [19]	19 entry-six 14-year-old soccer players participated in this study. Subjects were divided into 2 groups, namely the group with massage intervention on the feet and the control group without massage	A Random Controlled Trial	The massage intervention was given for 15 minutes in the supine position after performing repeated running ability tests	Massage can increase parasympathetic activity so that it has the potential to speed up recovery after repeated sprint exercises
(Shalfawi, Enoksen and Myklebust, 2019) [20]	Four men and four women with an average age of 18 years participated in the study	A random crossover	The intervention was given with a multi-bar roller massager on the quadriceps muscle for 10 minutes before and 15 minutes after cycling until fatigue	Blood lactate levels were higher during fatigue and decreased after multi-bar massage. In addition, there is a tendency to have a positive effect on muscle strength but there is no significant difference in VO2Max
(Chwala et al., 2021) [1]	Eighty-four healthy men aged 20-25 years were involved in this study and then randomly divided the group into four groups. Two groups performed isometric exercises (1 control group with passive rest and 1 group received massage intervention) and 2 groups performed auxotonic exercises (1 control group with passive rest and 1 group received massage intervention)	Eksperimental	The intervention was given in the form of a vibration massage 20 minutes after the subject did isometric and auxotonic exercises using a leg press with submaximal intensity	A significant difference in maximal strength was seen in the isometric exercise group that was given vibration massage. The effects of a massage done right have the potential to speed up recovery after a workout

Table 1. Continued

(Piotrowska et al., 2021) [21]	Twelve 21-year-old trained men participated in the study. Furthermore, the subjects were randomly divided into 2 groups, namely the control group and the treatment group	Eksperimental	Vibration massage intervention was given for 60 minutes after the subject performed a cycle ergometer exercise for 180 minutes	The administration of vibration massage intervention was significantly able to reduce creatine kinase levels as a marker of muscle damage compared to the control group
(White et al., 2020) [22]	A total of 9 healthy men aged 23 years participated in the study	Eksperimental	5 subjects completed massage therapy and control conditions (on 2 different trial days, separated by 1 week). The intervention was given 23 after the subject did moderate to high-intensity exercise in the form of intermittent sprint training	Massage therapy seems to be able to reduce the inflammatory response after high-intensity exercise so it has the potential to speed up recovery
(Bender et al., 2019) [23]	A total of seventy eight runners aged 16 to 60 years were included in this study. Subjects were divided into 2 groups, namely treatment which was given massage, and the control group was given false joint mobilization	Eksperimental	Massage intervention was carried out for 10 minutes after the subject did a 10 km running activity	Massage done after physical exercise can reduce pain intensity
14 (Cheatham, Stull and Kolber, 2018) [24]	A total of 45 adults participated in the study. Subjects were divided into 3 groups, namely the group with roller massage, the group with non-roller piggin, and the control group	A Randomized Controlled Trial	The massage intervention was carried out for 2 minutes and the control group did not massage	Roller massage was able to reduce pain and increase the Range of Motion compared to the non-roller group and the control group
(Nunes et al., 2016) [25]	Seventy-four triathlon athletes between the ages of 37 and 39 who completed an event and experienced pain in the anterior thigh participated in the study	A Randomized Trial	After the competition, the subjects in the experimental group were given a quadriceps massage intervention for 7 minutes and the control group rested in a sitting position	Massage therapy is effective for reducing pain and accelerating recovery after long-distance triathlon training activities
(Hoffman et al., 2016) [26]	Seventy-three ultramarathon athlete 13 participated in the study. Subjects were divided into 3 groups, namely the massage group (n=25), the pneumatic compress group (n=21), and the control group (n=24)	A Randomized Trial	After the competition, subjects were randomly assigned to an intervention of massage for 20 minutes, pneumatic compresses, and supine rest	17 There was a significant decrease in muscle pain intensity in the massage and pneumatic compress group compared to the control group

Table 1. Continued

	Eksperimental	2
		Massage and fake massage were performed 1 week after model formation. The intervention was carried out for 10 minutes and was carried out once a day for a week. The sham massage group received no massage, but the right gastrocnemius muscle was lightly clamped for 10 minutes. The normal and model groups did not receive any intervention
(Xing et al., 2021) [27]	Thirty-two male rats aged 608 weeks weighing 130-200 grams were used as research subjects. Subjects were divided into 4 groups, namely the normal group, model, fake massage, and massage	The rats were anesthetized then the right gastrocnemius muscle received a cyclic compressive load for 30 minutes as a mimetic massage. After being treated, 18 mice were placed in their cages and allowed to recover. After 24 hours post-treatment, the mice were euthanized and then the muscles were surgically removed and frozen
(Hunt et al., 2019) [28]	Thirty male rats were selected and then divided into 2 groups, namely the treatment group with massage and the control group without massage	Massage can increase muscle stem cells so that it has the potential to repair injured muscles

4. Discussion

The main purpose of this literature review is to analyze the potential of massage to accelerate recovery and reduce pain intensity after physical exercise. Exercises performed at high intensity, especially with repetitive eccentric movements, will cause muscle damage, inflammation, and muscle pain [29–32]. These symptoms will be felt for 4 to 7 days and usually, the pain reaches its peak 24 hours after exercise [33,34].

The results of this literature review show that there is evidence that massage has been used as an alternative to speed up recovery and reduce pain intensity. We investigated the mechanism of massage effects starting from muscle cells in experimental animals who reported that massage was able to increase muscle stem cells and potentially repair injured muscles [28]. In addition, massage is able to facilitate adaptive changes in the somatosensory cortex that lead to injury recovery and peripheral nerve repair [27]. In this regard, massage basically facilitates the integration of information by reversing the activity of the somatosensory cortex to restore sensory function. Furthermore, we observed that massage has been shown to lower blood lactic acid levels [20]. We believe in a theory reporting that lactate contributes to ischemic pain in sensory neurons that innervate muscles [6]. In addition, we found evidence that massage has the potential to decrease the inflammatory

response and muscle damage [21,22]. In this regard, other studies have also reported the effectiveness of massage to reduce pain intensity [23–26]. Reducing pain intensity will potentially restore muscle work efficiency, increase ROM and muscle strength [20,24]. Some of the results of this literature report that massage is effective for 10, 20, 30 and 60 minutes [21,26–28].

The findings of this literature review imply that high-intensity physical exercise that triggers muscle soreness has many advantages when given massage. This benefit is so beneficial in sports that the potential for the use of regular NSAIDs is reduced. In addition, a short exercise massage has the potential to accelerate recovery, reduce pain intensity, increase ROM and muscle strength after physical exercise. We recognize that this literature review leaves unanswered questions. This includes the effect of repeated massages that are carried out regularly and the most effective duration for doing massages because the results of the literature vary in duration.

5. Conclusions

Exercises performed at high intensity, especially with repetitive eccentric movements, will cause muscle damage, inflammation, and muscle pain. This review reports that physical intensity exercise that triggers muscle soreness has many advantages when massaged. This benefit is so

beneficial in sports that the potential for use of regular NSAIDs is reduced. In addition, massage has the potential to accelerate recovery, reduce pain intensity, increase ROM and muscle strength after physical exercise. Therefore, we recommend that massage be used as an alternative to speed up recovery and decrease post-exercise pain intensity.

Declarations

7

Conflict of Interest

The authors declare that they have no conflict of interest.

Authors' Contributions

All authors contributed equally in the research and preparation of the paper.

Funding

This research uses private funds.

1

Acknowledgments

The author would like to thank LPPM Universitas Negeri Surabaya and Universitas Negeri Padang.

REFERENCES

[1] W. Chwała, P. Pogwizd, Ł. Rydzik, and T. Ambroży, "Effect of Vibration Massage and Passive Rest on Recovery of Muscle Strength after Short-Term Exercise," *Int. J. Environ. Res. Public Health*, vol. 18, no. 21, pp. 1-15, 2021. DOI: 10.3390/ijerph182111680.

[2] A. Pérez-Bellmunt *et al.*, "Effects of a Massage Protocol in Tensiomyographic and Myotonometric Proprieties," *Int. J. Environ. Res. Public Health*, vol. 18, no. 8, pp. 1-9, 2021. DOI: 10.3390/ijerph18083891.

[3] D. Constantin-Teodosiu and D. Constantin, "Molecular mechanisms of muscle fatigue," *International Journal of Molecular Sciences*, vol. 22, no. 21, pp. 1-6, 2021. DOI: 10.3390/ijms222111587.

[4] E. Cè, S. Longo, E. Limonta, G. Coratella, S. Rampichini, and F. Esposito, "Peripheral fatigue: new mechanistic insights from recent technologies," *Eur. J. Appl. Physiol.*, vol. 120, no. 1, pp. 17-39, 2020. DOI: 10.1007/s00421-019-04264-w.

[5] B. Jereb and V. Strojnik, "Effect of Six-Week Speed Endurance Training on Peripheral Fatigue," *Int. J. Environ. Res. Public Health*, vol. 19, no. 17, pp. 10841, 2022. DOI: 10.3390/ijerph191710841.

[6] B. Sonkodi, "Should We Void Lactate in the Pathophysiology of Delayed Onset Muscle Soreness? Not So Fast! Let's See a Neurocentric View!," *Metabolites*, vol. 12, no. 9, pp. 857, 2022. DOI: 10.3390/metabo12090857.

[7] M. Matsuda, Y. Huh, and R.-R. Ji, "Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain," *J. Anesth.*, vol. 33, no. 1, pp. 131-139, 2019. DOI: 10.1007/s00540-018-2579-4.

[8] G. W. Y. Ko and C. Clarkson, "The effectiveness of acupuncture for pain reduction in delayed-onset muscle soreness: a systematic review," *Acupunct. Med.*, vol. 38, no. 2, pp. 63-74, 2020. DOI: 10.1177/0964528419887978.

[9] M. E. Godersky, L. K. Vercammen, A. S. Ventura, A. Y. Walley, and R. Saitz, "Identification of non-steroidal anti-inflammatory drug use disorder: A case report," *Addict. Behav.*, vol. 70, pp. 61-64, 2017. DOI: 10.1016/j.addbeh.2017.02.008.

[10] Y. N. Maksimov and D. K. Khaibullina, "Acute musculoskeletal neck and back pain," *Meditinskij Sov. = Med. Counc.*, vol. 19, no. 1, pp. 81-88, 2021. DOI: 10.21518/2079-701x-2021-19-81-88.

[11] G. Mahesh, K. Anil Kumar, and P. Reddanna, "Overview on the Discovery and Development of Anti-Inflammatory Drugs: Should the Focus Be on Synthesis or Degradation of PGE(2)?," *J. Inflamm. Res.*, vol. 14, pp. 253-263, 2021. DOI: 10.2147/JIR.S278514.

[12] Y. Kyriakidou, C. Wood, C. Ferrier, A. Dolci, and B. Elliott, "The effect of Omega-3 polyunsaturated fatty acid supplementation on exercise-induced muscle damage," *J. Int. Soc. Sports Nutr.*, vol. 18, no. 1, pp. 1, 2021. DOI: 10.1186/s12970-020-00405-1.

[13] N. Ayubi, Purwanto Bambang, P. S. Rejeki, N. W. Kusnanik, and L. Herawati, "Effect of acute omega 3 supplementation reduces serum tumor necrosis factor-alpha (TNF- α) levels, pain intensity, and maintains muscle strength after high-intensity weight training," *Retos*, vol. 46, no. 1, pp. 677-682, 2022. DOI: 10.47197/retos.v46.93720.

[14] S. Bindu, S. Mazumder, and U. Bandyopadhyay, "Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective," *Biochem. Pharmacol.*, vol. 180, no. 1, pp. 114147, 2020. DOI: 10.1016/j.bcp.2020.114147.

[15] C. Alba-Jiménez, D. Moreno-Doutres, and J. Peña, "Trends Assessing Neuromuscular Fatigue in Team Sports: A Narrative Review," *Sport. (Basel, Switzerland)*, vol. 10, no. 3, pp. 33, 2022. DOI: 10.3390/sports10030033.

[16] G. Guo *et al.*, "Effectiveness and safety of massage for athletic injuries: A protocol for systematic review and meta-analysis," *Medicine (Baltimore)*, vol. 100, no. 32, pp. e26925, 2021. DOI: 10.1097/MD.00000000000026925.

[17] K. Mine, D. Lei, and T. Nakayama, "IS PRE-PERFORMANCE MASSAGE EFFECTIVE TO IMPROVE MAXIMAL MUSCLE STRENGTH AND FUNCTIONAL PERFORMANCE? A SYSTEMATIC REVIEW," *Int. J. Sports Phys. Ther.*, vol. 13, no. 5, pp. 789-799, 2018. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6159489/>.

[18] D. W. Van Pelt, M. M. Lawrence, B. F. Miller, T. A. Butterfield, and E. E. Dupont-Versteegden, "Massage as a Mechanotherapy for Skeletal Muscle," *Exerc. Sport Sci. Rev.*, vol. 49, no. 2, pp. 107-114, 2021. DOI:

10.1249/JES.0000000000000244.

[19] Y.-S. Chen, W.-A. Lu, F. M. Clemente, J. P. Bezerra, and C.-D. Kuo, "Increased Parasympathetic Activity by Foot Reflexology Massage after Repeated Sprint Test in Collegiate Football Players: A Randomised Controlled Trial," *Sports*, vol. 7, no. 11, pp. 228, 2019. DOI: 10.3390/sports7110228.

[20] S. A. I. Shalfawi, E. Enoksen, and H. Myklebust, "Acute Effect of Quadriceps Myofascial Tissue Rolling Using A Mechanical Self-Myofascial Release Roller-Massager on Performance and Recovery in Young Elite Speed Skaters," *Sports*, vol. 7, no. 12, pp. 346, 2019. DOI: 10.3390/sports7120246.

[21] A. Piotrowska *et al.*, "Local Vibration Reduces Muscle Damage after Prolonged Exercise in Men," *J. Clin. Med.*, vol. 10, no. 22, pp. 5461, 2021. DOI: 10.3390/jcm10225461.

[22] G. E. White, S. L. West, J. E. Caterini, A. P. Di Battista, S. G. Rhind, and G. D. Wells, "Massage Therapy Modulates Inflammatory Mediators Following Sprint Exercise in Healthy Male Athletes," *Journal of Functional Morphology and Kinesiology*, vol. 5, no. 1, pp. 9, 2020. DOI: 10.3390/jfmk5010009.

[23] P. U. Bender, C. M. da Luz, J. M. Feldkircher, and G. S. Nunes, "Massage therapy slightly decreased pain intensity after habitual running, but had no effect on fatigue, mood or physical performance: a randomised trial," *J. Physiother.*, vol. 65, no. 2, pp. 75-80, 2019. DOI: 10.1016/j.jphys.2019.02.006.

[24] S. W. Cheatham, K. R. Stull, and M. Kolber, "Comparison of a Vibration Roller and a Nonvibration Roller Intervention on Knee Range of Motion and Pressure Pain Threshold: A Randomized Controlled Trial," *J. Sport Rehabil.*, vol. 8, no. 1, pp. 39-45, 2018. <https://pubmed.ncbi.nlm.nih.gov/28787233/>

[25] G. S. Nunes, P. U. Bender, F. S. de Menezes, I. Yamashita-fuji, V. Z. Vargas, and B. Wageck, "Massage therapy decreases pain and perceived fatigue after long-distance Ironman triathlon: a randomised trial," *J. Physiother.*, vol. 62, no. 2, pp. 83-87, 2016. DOI: <https://doi.org/10.1016/j.jphys.2016.02.009>.

[26] M. D. Hoffman, N. Badowski, J. Chin, and K. J. Stuempfle, "A randomized controlled trial of massage and pneumatic compression for ultramarathon recovery," *J. Orthop. Sports Phys. Ther.*, vol. 46, no. 5, pp. 320-326, 2016. DOI: <https://doi.org/10.2519/jospt.2016.6455>.

[27] X.-X. Xing, M.-X. Zheng, X.-Y. Hua, S.-J. Ma, Z.-Z. Ma, and J.-G. Xu, "Brain plasticity after peripheral nerve injury treatment with massage therapy based on resting-state functional magnetic resonance imaging," *Neural Regen. Res.*, vol. 16, no. 2, pp. 388-393, 2021. DOI: 10.4103/1673-5374.290912.

[28] E. R. Hunt, A. L. Confides, S. M. Abshire, E. E. Dupont-Versteegden, and T. A. Butterfield, "Massage increases satellite cell number independent of the age-associated alterations in sarcolemma permeability," *Physiol. Rep.*, vol. 7, no. 17, pp. e14200, 2019. DOI: 10.1481/phy2.14200.

[29] Y. Tanabe, N. Fujii, and K. Suzuki, "Dietary Supplementation for Attenuating Exercise-Induced Muscle Damage and Delayed-Onset Muscle Soreness in Humans," *Nutrients*, vol. 14, no. 1, pp. 70, 2021. DOI: 10.3390/nu14010070.

[30] O. Dupuy, W. Douzi, D. Theurot, L. Bosquet, and B. Dugué, "An evidence-based approach for choosing post-exercise recovery techniques to reduce markers of muscle damage, Soreness, fatigue, and inflammation: A systematic review with meta-analysis," *Front. Physiol.*, vol. 26, no. 9, pp. 403, 2018, DOI: 10.3389/fphys.2018.00403.

[31] R. A. Laar *et al.*, "Performance, health, and psychological challenges faced by students of physical education in online learning during covid-19 epidemic: A qualitative study in China," *Healthc.*, vol. 9, no. 8, pp. 10.30, 2021. DOI: 10.3390/healthcare9081030.

[32] D. Fernández-Lázaro, J. Mielgo-Ayuso, J. S. Calvo, A. C. Martínez, A. C. García, and C. I. Fernandez-Lazaro, "Modulation of exercise-induced muscle damage, inflammation, and oxidative markers by curcumin supplementation in a physically active population: A systematic review," *Nutrients*, vol. 12, no. 2, pp. 501, 2020. DOI: 10.3390/nu12020501.

[33] B. L. Hung, C. Y. Sun, N. J. Chang, and W. D. Chang, "Effects of Different Kinesio-Taping Applications for Delayed Onset Muscle Soreness after High-Intensity Interval Training Exercise: A Randomized Controlled Trial," *Evidence-based Complement. Altern. Med.*, Special Issue, pp. 1-10, 2021. DOI: 10.1155/2021/6676967.

[34] C. Zeng, G. Luo, S. Xu, and Y. Li, "The Application of DOMS Mechanism and Prevention in Physical Education and Training," *J. Healthc. Eng.*, vol. 2022, no. 1, pp. 9654919, 2022. DOI: 10.1155/2022/9654919.

Massage Has the Potential to Accelerate Recovery and Decrease Muscle Soreness after Physical Exercise (Literature Review)

ORIGINALITY REPORT

22% SIMILARITY INDEX **20%** INTERNET SOURCES **14%** PUBLICATIONS **%** STUDENT PAPERS

PRIMARY SOURCES

1	www.researchgate.net Internet Source	6%
2	www.ncbi.nlm.nih.gov Internet Source	2%
3	www.researchsquare.com Internet Source	2%
4	efsupit.ro Internet Source	2%
5	www.mdpi.com Internet Source	1%
6	www.jrtdd.com Internet Source	1%
7	op.niscair.res.in Internet Source	1%
8	pubmed.ncbi.nlm.nih.gov Internet Source	1%
	recyt.fecyt.es	

9

1 %

10

www.coursehero.com

1 %

11

Diego Fernández-Lázaro, Cesar I. Fernandez-Lazaro, Jesús Seco-Calvo, Evelina Garrosa, David P. Adams, Juan Mielgo-Ayuso. "Effects of Tribulus terrestris L. on Sport and Health Biomarkers in Physically Active Adult Males: A Systematic Review", International Journal of Environmental Research and Public Health, 2022

1 %

Publication

12

Zhen-Zhen Ma, Ye-Chen Lu, Jia-Jia Wu, Xiang-Xin Xing, Xu-Yun Hua, Jian-Guang Xu. "Acupuncture Induces Reduction in Limbic-Cortical Feedback of a Neuralgia Rat Model: A Dynamic Causal Modeling Study", Neural Plasticity, 2020

1 %

Publication

13

worldwidescience.org

<1 %

Internet Source

14

Scott W. Cheatham, Kyle R. Stull, Morey J. Kolber. "Comparison of a Vibration Roller and a Nonvibration Roller Intervention on Knee Range of Motion and Pressure Pain

<1 %

Threshold: A Randomized Controlled Trial", Journal of Sport Rehabilitation, 2019

Publication

15	ijsppt.org Internet Source	<1 %
16	www.efsprit.ro Internet Source	<1 %
17	Aneta Bac, Sabina Kaczor, Szymon Pasiut, Anna Ścisłowska-Czarnecka, Agnieszka Jankowicz-Szymańska, Katarzyna Filar-Mierzwa. "The influence of myofascial release on pain and selected indicators of flat foot in adults: a controlled randomized trial", Scientific Reports, 2022 Publication	<1 %
18	Emily R. Hunt, Amy L. Confides, Sarah M. Abshire, Esther E. Dupont - Versteegden, Timothy A. Butterfield. "Massage increases satellite cell number independent of the age - associated alterations in sarcolemma permeability", Physiological Reports, 2019 Publication	<1 %
19	ic.suwon.ac.kr Internet Source	<1 %
20	mdpi-res.com Internet Source	<1 %

21

<1 %

22

Wiesław Chwała, Paweł Pogwizd, Łukasz Rydzik, Tadeusz Ambroży. "Effect of Vibration Massage and Passive Rest on Recovery of Muscle Strength after Short-Term Exercise", International Journal of Environmental Research and Public Health, 2021

Publication

23

Gillian E. White, Sarah L. West, Jessica E. Caterini, Alex P. Di Battista, Shawn G. Rhind, Greg D. Wells. "Massage Therapy Modulates Inflammatory Mediators Following Sprint Exercise in Healthy Male Athletes", Journal of Functional Morphology and Kinesiology, 2020

Publication

24

Novadri Ayubi, Nining Widyah Kusnanik, Lilik Herawati, Heryanto Nur Muhammad, Toho Cholik Mutohir, Anton Komaini. "Curcumin: A compound in turmeric that has the potential to reduce Nuclear Factor-Kappa Beta (NF- κ B), Tumor Necrosis Factor-Alpha (TNF- α) levels, and pain intensity after high-intensity physical exercise", Research Square Platform LLC, 2022

Publication

<1 %

<1 %

Exclude quotes

On

Exclude matches

< 5 words

Exclude bibliography

On